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Effect of shallow water internal waves on ocean acoustic striation patterns

Daniel Rouseff
Applied Physics Laboratory

College of Ocean and Fishery Sciences
1013 NE 40" Street, Seattle, WA 98105

Abstract. Contour plots of underwater acoustic intensity, mapped in range and frequency, often
exhibit striations. It has been claimed that a scalar parameter “beta,” defined in terms of the slope
of the striations, is invariant to the details of the acoustic waveguide. In shallow water, the
canonical value is = 1. In the present paper, the waveguide invariant is modeled as a distribution
rather than a scalar. The effects of shallow water internal waves on the distribution are studied by
numerical simulation. Realizations of time-evolving shallow water internal wave fields are
synthesized and acoustic propagation simulated using the parabolic equation method. The
waveguide invariant distribution is tracked as the internal wave field evolves in time. Both random
background internal waves and more event-like solitary internal waves are considered.

Note: A version of this report was submitted to the journal Waves in Random Media.
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1. Introduction

In the second edition of Fundamentals of Ocean Acoustics, Brekhovskikh and Lysanov
introduced the concept of intensity invariance to a larger audience [1]. They showed the acoustic
intensity plotted versus range and frequency would exhibit striations, parallel contours of high
intensity. They defined a parameter “beta” as a simple function of range, frequency and the slope
of the striations, and claimed that this parameter was invariant. For a deep-water scenario with a
sound speed duct, they found f=-3. In shallow water, they assumed an isovelocity water column

and found B =-+1.

The concept of a waveguide invariant has enormous appeal. The waveguide might support
several mutually interfering acoustic modes. The interference between the modes will change with
acoustic frequency. If the invariant concept is valid, the complicated details of an interference
pattern can be distilled into a single scalar parameter. This would be particularly useful in shallow
water where the sound may have multiple interactions with both the sea surface and the seabed.
From a modest knowledge of the medium, beta could be estimated and compared to measurements.
Beta constitutes a robust observable; while the details of the intensity striation pattern may change
in time, the waveguide invariant should remain constant if it is truly invariant.

Beginning with the article by Chuprov [2], a number of Russian papers examine different
aspects of the waveguide invariant problem. The more theoretical of these studies relied on
analytical techniques. Perturbation theory, adiabatic modes, the WKB approximation and other
simplifications were necessary to get closed form solutions [3-6]. More recently, the concept has
received attention in the Western literature [7]. It was used to move the focal range in a phase
conjugation experiment [8]. The theory was extended to environments varying in azimuth and used
in the analysis of single receiver spectrograms [9].

Shallow water is often characterized by strong stratification in temperature and density.
Disturbances to the pycnocline induced by tidal forcing cause internal waves to be generated.
From the standpoint of acoustics, internal waves cause fluctuations in the speed of sound and so
distort a propagating acoustic field. Petnikov and colleagues [10-12] have shown that shallow
water variability, including internal waves, can cause the interference pattern of the acoustic field
to shift in frequency. The goal of the present work is to determine if the “waveguide invariant” is
truly “invariant” to effects of internal waves, or if the frequency shifts they introduce are sufficient
to destroy the concept.

In Section 2, intensity invariance is examined by numerical simulation for range-
independent environments. When there is a sound speed profile, the slope of the intensity striations
is shown to depend on the depth of the receiver. These simulations serve primarily as the baseline
to which other more complicated scenarios will be compared. A new method for quantifying the
“beta content” of intensity images is outlined in Section 3. Rather than treat the waveguide
invariant as a scalar, it is modeled as a distribution. The shape of the distribution will depend on
the propagation environment and the measurement geometry; the distribution can be sharply
peaked around a single value or more diffuse. Random background internal waves are considered
in Section 4. Realizations of time-evolving shallow water internal waves are synthesized and
acoustic propagation through the range-dependent environment is simulated using the parabolic
equation method. The waveguide invariant distribution is estimated from images of intensity and
tracked as the internal wave field evolves. Depending on several factors, the internal waves can
have significantly different effects on the distribution: it can be left practically unchanged, made
more sharp around a single value, or become more diffuse. The distribution can even become
bimodal making it appear as if there were two sources. These effects can be explained by mode
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coupling. A simple model for solitary internal waves is used in Section 5. Solitary wave motion is
shown to cause rapid changes in the waveguide invariant distribution.

2. Range-independent Scenarios

The concept of a waveguide invariant is most easily illustrated by an example. Consider an
isovelocity water column, 70 m deep, with sound speed 1480 m/s. The bottom is also range-
independent with sound speed 1580 m/s, density 1.85 g/cm?3, and attenuation 0.04 dB/A. Place an

acoustic source at depth 50 m, and consider the downrange intensity calculated at the same depth.
Figure 1 shows the transmission loss over a window from 9 to 10 km downrange, and from 400 to
420 Hz. The image was sampled every 4 m in range and every 0.25 Hz in frequency. The
calculation assumes the source has a flat response over this frequency band. The scale spans a 16
dB dynamic range. The image shows clear striations.

420 Figure 1. Transmission loss in range-
§ frequency plane. Range is distance from
= source at constant depth 50 m. Isovelocity
§ 410 water column 70 m deep. Remaining simula-
=1 tion parameters described in the text. Color
L scale spans 16 dB dynamic range. Line

v e e superimposed on image corresponds to invari-
90 92 94 96 98 100 antparameterbetaequal one.

™
Q
S

range (km)

Superimposed on the image is a line along the crest of one of the nearly parallel striations.
Define the slope of this line as dw/dr. Let I(r,@) be the intensity as a function of range and

frequency. Then along the crest

(do®+drf)-VI=0, §))
which implies
do ol/or
b ki 2
dr ol/ow @

Brekhovshikh and Lysanov define the parameter f as

p=L2 ©)

w dr

and claim it to be invariant. That is, if one were to increase the frequency, for example, the slope
of the striations would increase so as to leave 8 unchanged. If one were to increase the range, the

slope would be more shallow. Consequently, if it is truly invariant, this single scalar parameter
captures many of the essential features of the propagating acoustic energy.
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The line in Fig. 1 corresponds to B =1, the canonical value for shallow water. To

understand its origins, expand the acoustic intensity in its normal modes [1,2]. Assuming a range-
independent environment with source and receiver depths z; and z, respectively

2

1= (Y, (2)¥, ()™ | =Y B, cosl(&, -&)r], 4)

m.n

where ¥, is an eigenfunction (mode) and &, the corresponding eigenvalue (horizontal
wavenumber). These terms are subsumed in B, ,, and certain unimportant scaling terms have been
suppressed. Taking the derivative with respect to range yields

oIfor ==Y B, (&, —&)sin[(§, —&,)r]

©
--0%B, (———]smué - £

where v, = /&, is the phase velocity of the corresponding mode. The expression is approximate
because the weak range-dependence of B, , has been neglected. Similarly, taking the derivative
with respect to frequency

ol/dw = —rz [————]sm[(g —&)rl, (6)

n

where u, =(3&,/ aa))_1 is the group velocity.

Equations (5) and (6) can be substituted into Eq. (2), and the result substituted into (3).
Note that the explicit » and @ in (3) are both cancelled by terms in the intensity derivatives. Still,
the result is a cumbersome ratio of summations, with phase velocity terms in the numerator and
group velocity terms in the denominator. The expression simplifies, however, when one realizes
that there is typically a functional dependence between the group and phase velocities. For
example, consider an isovelocity waveguide bounded from above by the sea surface and from
below by a perfectly reflecting bottom. One can show [1] that the product of the two velocities 1s a
constant, independent of mode number: u,v, = C>. When this is substituted into (3), it follows

that first order changes in phase and group velocities contribute only higher order changes in f;
literally, the expression is invariant and =1 is the correct numerical value. The situation in Fig. 1

differs only slightly in that the bottom is penetrable and has some associated loss.

More complicated scenarios would involve a sound speed profile in the water column. In
this case, Brekhovskikh and Lysanov approximate the relationship between the phase and group
velocities by a power series and retain terms only through first order. Within these approximations,
P remains invariant, but its numerical value could change.

As an example, consider the sound speed profile shown in Fig. 2. A mixed layer extends

down to about 12 m followed by a fairly steep thermocline. The sound speed gradient gradually
lessens, and below about 45 m the water is nearly isovelocity down to the bottom at 70 m. Also
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shown are the first four acoustic modes. The first mode has an upper turning point in the
thermocline, well below the sea surface. The next few modes also turn in the water column,
reaching the sea surface only in their asymptotic region, if at all. Only by mode 7 (not shown) are
the modes clearly bound from above by the sea surface. This differs from the isovelocity case
where all the modes reach the sea surface.

(a) O J (b) T T T T
20 I // ] ] e ] Figure 2. Depth dependent environment.
4 a) Sound speed profile in water column,
— | 1 i | peed p
E and (b) associated first four acoustic
£ 40 s modes. In Section 3, the profile is per-
3 1 F Eﬁ\)} turbed by internal waves introducing range
60 e dependence in the environment.
i i I3 i 1
80
1480 1500 1520 2 -1 O 1 2
ssp (m/s) mode amplitude

The sound speed profile in Fig. 2 was used in an acoustic simulation. The remaining
simulation parameters were the same as in Fig. 1, with the source still at depth 50 m. Figure 3
shows the simulated intensity pattern at two depths: 10 and 50 m. Although not as pristine as Fig.
1, both patterns show striations. Consider Fig. 3(a) where the receiver is above the thermocline.
The low order modes turn below the shallow receiver and so the propagation is dominated by the
higher order modes. These higher order modes interact with the sea surface and as a result § =1

remains a reasonable value. The situation changes for the deep receiver, Fig. 3(b). The intensity is
dominated by the less attenuated, lower order modes. The striation pattern is steeper, and while the
concept of an invariant remains plausible a larger numerical value is in order. The result is
consistent with a recent field experiment where both source and receivers were below the
thermocline and =1.4 was observed [8].

Figures 1 and 3 show lines corresponding to different values of beta. To draw these lines,
the relationship in (3) was approximated by setting the range to 9 km, the frequency to 400 Hz, and
replacing the derivative by a finite difference. A more systematic way of analyzing intensity
images is derived in the following section.

3. Modeling the waveguide invariant as a distribution
Brekhovskikh and Lysanov [1] cautioned that the definition of £ in (1) applies only “for a

group of modes.” As the range and frequency change, “the sound field will be determined by
another group of modes...result[ing] in a change of B.” Internal waves cause the acoustic modes to

couple, potentially causing the field to be determined by a different group of modes and thereby
changing beta. For example, the water borne modes in Fig. 2(b) will have a different value of beta
than the higher order modes that interact with the sea surface. Internal waves will cause the
distribution of energy in the different acoustic modes to change in time and space and thereby
change the distribution of values for beta.
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In his original paper [2], Chuprov suggested that “in more-complex situations, spectral
analysis of experimental values of intensity as a function of two arguments /(@,r) should be used.”
In this section, a new spectral method for analyzing intensity images is developed. As an output of
this processing, beta is treated as a distribution rather than a simple scalar parameter. Effectively,

one calculates the “beta content” of the measured intensity. In subsequent sections, this processing
method is used to quantify the effect of internal waves.

Let the intensity pattern I(r,w) be measured over the finite window r,, <r<r,, and
0, <0 <o, . The data window is assumed small compared to the dimensions of the problem:

rmid = (rmax + rmin )/2 >> (rmax - rmin ?

7
wmid = (wmax + wmin )/2 >> (wmax - a)min)' ( )

Because the pattern is expected to exhibit striations, model I(r,@)over the data window as:
I(r,0) = I,(r - (dw/dr) w). 8)

where recall dw/dr is the slope of the striations. The function I,(r) is determined by the

interference between the propagating modes at a single frequency; see (4). The details of this one-
dimensional function are less important than the fact that it can be used to approximate the striated
two-dimensional function I(r,w). Evaluate (3) at r,,, and w,,,, and substitute into (8):

I(r,w)= Il(r - ,uw) )
where

n= (rmid/wmid)ﬁ_l . (10)
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Estimating a numerical value for f from a given image is perhaps most easily done in the
Fourier domain. Define the transform

itx,7)= j: j: I(r,0)e' ™ drdw. (11)

Strictly speaking, the model should be applied only over the finite data window. If it is artificially
applied over the entire region of integration in (11), a particularly simple formula results:

I(x,7) = I,()8(7 + px). (12)

The delta function in (12) means that the two-dimensional transform is non zero only along the line
7 =—ux in Fourier space. The slope of the line, —u, determines 8 via (10). In practice, (12)
would be convolved with the finite sized data window and the line would be smeared. The point
remains, however, that from the Fourier transform of the image one can determine .

The argument can be generalized to quantify the “beta content” of arbitrary intensity
images. Let <I> be the mean intensity averaged over the data window. Define [, =I-<1>.

Then by Parseval’s theorem, the energy E in the two domains is equivalent:
Tr e 2
E= J. I|Io(r,w)|2drdw = (27;)—2]‘ J‘IIO(K,T)I dxdr. (13)

Converting the latter to the polar coordinates x = Kcos¢ and 7 = Ksin¢ yields
nf2

E= [ E,d¢ (14)
-nf2
where
B
E, =)™ [ [T, (K cos¢, Ksing) [K|dK (15)
-B

The integral has been truncated at some maximum spatial frequency of interest B. The ramp filter
|K| in (15) arises from the change of variables. Note that fo(K cos¢,Ksin¢@)is the transform
evaluated along a line in Fourier space passing through the origin at angle ¢. Using (10), this angle
can be related to £

B=-r,/(0,,tang). (16)

Equation (15) can be evaluated over a range of angles thereby defining E, as a distribution.
Effectively, one calculates the “beta content” of an image. Figure 4 shows the function 7 E; /E

plotted versus B for the cases considered in Figs. 1 and 3. This normalization means the

distribution would equal one if the energy were uniformly distributed in angle. As expected, the
distributions for the two cases where there is significant interaction with the sea surface have their
maxima near S=1. For the case with both source and receiver below the thermocline, the
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distribution is more spread and the maximum shifted to near f=1.5. Note the small secondary
maximum for this case near §=1. This peak is from the interaction between the higher order,
surface interacting modes.

The proposed method of analysis has some useful features. Note that the (I-<1 >)* used
in the formulation literally defines the scintillation, a physically meaningful quantity [13]. Plots
such as Fig. 4 identify the most likely value for B but also show the spread. Note also that

fo (K cos ¢, Ksin¢) used in the present development can be related to the Radon transform by the

well-known Projection-Slice theorem of tomography [14]; recently, Thode [15] analyzed intensity
images using the Radon transform. For real or synthetic data measured over a finite data window,
the continuous Fourier transform in (15) can be approximated using the FFT. Interpolation and
numerical quadrature then approximate the integral in (15).

For range-independent environments, Rouseff and Spindel were able to derive a simple
formula relating the beta distribution to the modal expansion of the field and the measurement
geometry [16]. The source and/or receiver depths were varied, and the effects of bottom loss
quantified. Such a simple decomposition, however, is not possible when there is range-dependence
in the environment. In the following sections, the effects of range-dependent shallow water
internal waves are studied.

8 LI LELIR B LRI LB l Ty ! LA LI l L LI
i 3 - — ] Figure 4. "Beta content" of images. Using
6 b AL - — - ng' 1 h discrete version of Eq. (15), calculated and
A Fig. 3(a) ¥ lotted versus beta for images shown in
= ' ] » 4 p o
S BRAR" Fig. 3(b) 3 | Figs. 1, 3(a) and 3(b). For the two cases
Lﬁl ’ \ —] N v . . . .
a4 r J: A . with significant energy in surface interacting
) ‘\ \\ A acoustic modes, the maximum is at the
2 i ¥ G LLTEe o L canonical value beta equal one. A higher
-:’/ N4 — i ___ I value is appropriate when both source and
o bbb d il un b N receiver are below the thermocline.
05 1 15 2 25 3 35 4
beta

4. Effect of Background Internal Waves

In deep water, internal waves propagate in many different directions. Since the waves are
randomly phased, it is appropriate to model them as a random process governed by a spectrum.
These waves induce fluctuations in the sound speed and so affect acoustic energy propagating
through them. The success of the Garrett-Munk (GM) approach [17] in deep water has lead to
speculation that a similar model might be useful for shallow water situations. While this remains a
research topic [18-20], it appears that diffuse background internal waves in shallow water can be
represented by a GM-like model. In this section, a spectral model developed from a recent shallow
water field experiment is used to specify an ocean internal wave simulator. Acoustic propagation
through the resulting sound field is accomplished using a parabolic equation method. The beta
distribution is estimated from images of acoustic intensity and tracked as the internal wave field
evolves.

Two parameters of the GM internal wave model are the modal bandwidth, given by j,, and
the strength, given by the product bE,,; see Henyey et al. 18] for details. The parameters for the

shallow water situation in this work are determined by moored temperature and current
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measurements obtained by a group at Oregon State University [21] concurrent with the 1996
Coastal Mixing and Optics Experiment [22]. As has been observed in several experiments [23], the
shallow water measurements indicate an internal wave field dominated by low-order modes. A
value of j, =0 is supported by the observed depth dependence of current variance. The small value
for j, means certain approximations that are standard for deep water, particularly those derived
from the WKB method, are not adequate. Consequently, the full internal wave mode functions
must be calculated using numerical techniques. Values of bE,, from the data vary from 0.35 to

0.5 m, the larger value being used here. Note that the model was developed for a relatively
quiescent period when solitary waves were absent.

The sound speed fluctuations caused by the internal waves are assumed to arise solely from
the displacements, and current fluctuations are neglected. The spectral model was used as input to
an ocean simulator [24]. The simulator is a numerical solution to the linear internal wave equations
and produces fully three-dimensional realizations. Although the acoustic problem requires only
slices in range and depth, the complexity of a three-dimensional field is needed to evolve the
internal waves in time properly. In the present application, a computational domain 70 m deep by
21 km in range by 5.25 km in the transverse direction was used. Range-depth slices were obtained
from each three dimensional realization.

The resulting internal wave displacements {(r,z) are converted to sound speed
perturbations 6C(r,z). These are then added to the mean background profile C(z). The sound
speed profile shown in Fig. 2, obtained from the moored measurements [21], represents the mean
environment. There are some subtle issues in converting from wave displacement to sound speed.
In deep water, 8C(r,z) is usually obtained from {(r,z) by a first order Taylor expansion [25]. In
shallow water, the vertical sound speed gradients change rapidly rendering the expansion
questionable. Since the displacements are known exactly from the simulation, the more accurate
conversion is used:

8C(r,2) = C,(z = {(r,2) - C,(2), 17

where 51, (z) is the mean potential sound speed.

Sound propagation through the resulting environment was calculated using a parabolic
equation routine. The simulations were repeated at numerous acoustic frequencies. The entire suite
of simulations was repeated at each time step as the internal wave field was allowed to evolve. At
each time step, the beta distribution was calculated by implementing a discrete version of the
processor (15). In the following subsections, different parameters of the simulation are varied.

4.a. Receiver depth

The depth-dependent scenario of Section 2 was modified by the inclusion of range-
dependent internal waves. The acoustic source was fixed at depth 50 m. The data window for the
intensity images remained from 9 to 10 km in range, 400 to 420 Hz in frequency. The intensity
was sampled every 4 m in range, every 0.25 Hz in frequency.

First consider a receiver below the thermocline at 50 m depth. Figure 5 shows the beta
distribution evolving over three hours. The time step between curves is 400 seconds. So that they
could be compared, the Ej; at each time step was normalized by the total energy in the range-

independent case, Fig. 3(b).
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Several observations can be made. The maximum value of E, changes in time. In part,

this is a matter of serendipity. As suggested by Petnikov and Kuz’kin [10], the internal waves shift
the locations of the intensity striations in range and frequency. At certain times, the bands of high
intensity are centrally located in the 1 km-by-20 Hz data window and the maximum value of Ej
increases. At other times, the bands are shifted out of the main data window and E, decreases.
Note that while the details of the distribution change, there is a persistent maximum at around
B =1.5, the value for the range-independent case. Consequently, in a practical sense, the
“invariant parameter” is indeed invariant to the fluctuations induced by internal waves for this case.

Interestingly, in addition to the persistent maximum near f=1.5, there is an intermittent
local maximum near f=1. At 180 minutes, for example, the value of E, at =1 is comparable

to that observed at f=1.5. The distribution has become bimodal with two distinct peaks. It is as
if the observed intensity pattern was produced by two different acoustic sources. This is an artifact
of acoustic mode coupling. The internal waves have driven energy into the higher order, surface-
interacting modes. These modes, as shown in the previous section, give rise to the maximum near
B=1.

Figure 6 shows the evolving beta content for a receiver above the thermocline at 10 m
depth. The same realization of the internal wave field is used, and the remaining simulation
parameters are unchanged. At each time step, E, is normalized by the total energy in the range-
independent case, Fig. 3(a). The maximum at f =1 is strong and persistent. Note that there are
instances where the maximum exceeds 7.2, the value for the range-independent case (see Fig. 4).
The internal waves have actually enhanced the 8 =1 content of the images. Comparing to Fig. 5, it
is seen that these instances correspond to when there is a strong secondary maximum at =1 for
the deep receiver. When the internal waves force a greater fraction of the total acoustic energy into
the higher order, surface interacting modes, the =1 content in the observation increases
regardless of receiver depth.
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4.b. Bottom Attenuation

At all but the shortest of ranges in shallow water, interaction with the seabed cannot be
neglected. A sandy bottom, as used in these simulations, will usually be acoustically faster than the
water column. There is a finite loss associated with the bottom, often expressed in decibels-per-
wavelength. A modal decomposition of the acoustic field for this situation shows that the modes
penetrate into the seabed; as an example, see Fig. 2. In general, higher order modes penetrate
further into the bottom than lower order modes. Consequently, the rate at which the modes
attenuate as they propagate in range tends to increase with mode number. The bottom attenuation
0.04 dB/A used in the simulations was based on the average value observed in the 1995 Shallow

Water Acoustics in a Random Medium Experiment [26,27]. To test the sensitivity of the beta
distribution to this parameter, the simulations were repeated using the same internal wave field but
with increased bottom attenuation.

The simulation parameters in Figure 7 are the same as in Figure 5 except that the bottom
loss has been increased to 0.1 dB/A. Both the source and receiver are below the thermocline. As
in the previous figure, the results are normalized by the energy in the corresponding range-

independent case.
Even with the increased bottom attenuation, the peak in the distribution at § =1.5 remains.

The amplitude of the distribution at the peak, however, has been reduced. The increased
attenuation disproportionately affects the higher order modes. The higher order modes provide the
detailed, high spatial frequency features in the image. By diminishing these modes, the distribution
becomes more diffuse. The effect of bottom loss is also evident in the secondary maximum at
B =1. While still occasionally present, the amplitude of the distribution at f =1 is always clearly
less than at B =1.5. Again, this is because the higher order modes that contribute to the maximum
at B =1 have been attenuated.

The simulation was repeated with the bottom loss increased to 0.4 dB/A. For this case (not

shown), the distribution was diffuse with no distinct maxima at either =1 or f=1.5. Insuch a




Ocean acoustic striation patterns 12

high loss environment, the concept of a waveguide invariant becomes problematic whether or not
internal waves are present.

geotime (min) ——p

beta

Figure 7. Effect of evolving background internal waves. Same as Fig. 5 except bottom loss
increased to 0.1 dB/A.

4.c. Range

From (3), increasing the range to the receiver should decrease the slope of the striations if
beta is to remain invariant. Figure 8 shows a calculation for a data window extending from 20 to
21 km downrange, and from 400 to 420 Hz. Except for the increased range, the simulation
parameters are the same as in Figure 5. Both source and receiver are below the thermocline at
depth 50 m and the bottom attenuation is 0.04 dB/A.

Comparing Figures 5 and 8, several observations can be made. The peak is generally
sharper at the more distant range. Because the length of the receiving aperture is effectively a
smaller fraction of the range to the source, there is less smoothing and the distribution becomes
sharper. This is consistent with the formula derived in Rouseff and Spindel for the range-
independent case [16]. The location of the peak, however, has shifted to a slightly higher value of
beta. By going further in range, the higher order modes have been further attenuated. The lower
order modes corresponding to higher values for beta have been less impacted. Finally, as one
would expect, there is greater temporal variability. By increasing the range, the acoustic field
encounters more internal waves and so acquires increased fluctuations.
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5. Effect of Discrete Internal Wave Packets

In addition to a background internal wave field, there is frequently another type of internal
wave present in shallow water. Driven by tides and propagating from distinct bathymetric features,
discrete packets of internal waves can be generated. Satellite images have shown that these waves
can retain their coherence over multiple tidal cycles [28]. These solitary internal waves exhibit
bore-like properties, hence the term “solibore” has been coined [29].

It remains an open research question as how to best model acoustic propagation through
solibores. Both deterministic and stochastic approaches have been proposed [30]. The
rudimentary model used in this paper is a hybrid. The solibore is modeled as an internal wave
packet that in turn is the sum of several individual solitary waves. Each solitary wave depresses the
background sound speed profile. The entire packet moves at constant velocity without changing
shape; over the time scales of interest, dispersion is negligible. While the details of the internal
wave packet—the amplitude of the individual solitary waves and the spacing between them—may
be random, the direction and velocity of the packet is assumed known and deterministic. The
information deemed deterministic could reasonably be gleaned from satellite images.

In the present study, the simple analytical model developed by Presig and Duda [31,32] is
employed. Let d be the distance coordinate (range) relative to the leading edge of a solitary wave
packet. The vertical depression {(d) within the packet is modeled as the sum of three solitary

waves:

{(d)= 23) asech’[(d—d,)/b,]1, (18)

i=1

where the numerical values used for a;, b, and d; are listed in Table I. Relative to the leading
edge of the packet, the range-dependent sound speed profile (in m/s) in the water column c¢(z,d) is
modeled as being piecewise linear
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1522, O<z<z,+¢
c(z,d)=31522+ A(z—(zy, + M), z, + < z<z, +¢ (19)
1494, 7, +{<z<z

where the sound-speed gradient A =28/(z, —z,), z; =15m and z, =30 m. The water depth is
the constant z, =70 m. The ocean sediment has constant sound speed 1580 m/s, density 1.85
g/cm3, and attenuation 0.04 dB/A. The model is identical to the one used by Preisig and Duda

except the water depth and sediment parameters have been changed to be consistent with the
simulations of the previous sections. The packet is assumed to propagate towards the acoustic
source with constant velocity u. Consequently, at any time ¢ the leading edge of the packet is at
range r =r, —ut, where 7, is the initial position. Consistent with observations in both the SWARM

[27] and Coastal Mixing and Optics experiments [21,22], #=0.6 m/s is used.

i |  aim b; [m] d; [m]
1 15 100 900

2 12 125 1400
3 10 150 2000

Table I. Parameters of soliton packet model.

While an obvious simplification, the model has two elements essential in the present
application. First, as Preisig and Duda demonstrated, this model produces strong coupling between
the acoustic modes. Second, the motion of the packet introduces temporal variability.

Figure 9 shows the internal wave model and its effect on the interference pattern. Figure
9(a) shows the vertical depression defined by (18). The leading edge of the packet and three
subsequent depressions are indicated. As before, the intensity is measured over an aperture from 9
to 10 km in range and from 400 to 420 Hz in frequency. The source and receiver are below the
thermocline at depth 50 m and the attenuation is 0.04 dB/A. The initial position of wave packet is

r=10 km. Figures 9(b)-(d) show the changing range-frequency plots of acoustic intensity as

observed over the aperture while the packet moves. Superimposed on each plot is the f=1.5 line.
Figure 9(b) shows what is, in effect, the range-independent situation that occurs before the wave
packet enters the range-frequency data window. Figure 9(c) shows the data window 40 minutes
later. The internal wave packet has moved from right to left in the data window; the positions of
the first two solitary wave depressions are as indicated. As one would expect, to the left of the first
depression Figs. 9(b) and 9(c) are nearly identical. Figure 9(d) shows the data window just 10
minutes later. The new positions for the solitary wave depressions are as shown. The intensity
pattern has changed noticeably in the wake of the internal waves. The results are indicative of the
rapid changes in the acoustic intensity that can be caused by solitary waves. The solitary waves
cause strong acoustic mode coupling. As this mode coupling structure moves, the acoustic
interference pattern changes.
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Figure 9. Evolution of intensity images caused by moving solitary wave packet. Solitary
wave packet shown in (a). Point 0 denotes the leading edge with the subsequent sound
speed depressions from Eq. (18) enamerated. Figs. (b)-{d) show intensity images at mdi-
cated times (in minutes) with leading edge and subsequent depressions positioned as indi-
cated. Lines in (b)-(d) correspond to beta equal 1.5. In all cases, source and receiver are
at depth 30 m. The same color scale with 16 dB dynamic range used in all plots.

In Figs. 9(c) and (d), the solitary waves are moving directly over the horizontal receiving
array. In Fig. 10, the solitary waves have been allowed to continue moving towards the acoustic
source. Shown is the beta content of the intensity images evolving over one-half hour, starting at
=100 minutes. For =10 km and »=0.6 m/s, this corresponds to the packet moving just over 1 km,
with the leading edge going from »=6400 m to r=5320 m. The time step between curves is one
minute. With this sampling, there is considerable variability from curve to curve. Individual plots
typically exhibit a broad distribution of values for . Note that the maximum value for the

individual plots is typically much less than observed in Fig. 5, a case that had similar simulation
parameters but without the solitary waves. There is no obvious persistent maximum near =1.5.
Unless a more sophisticated processing scheme can be developed, solitary waves make it difficult
to identify an invariant.
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6. Summary

Brekhovskikh and Lysanov [1] cautioned that there were limitations to the waveguide
invariant defined by (1). If the frequency or range change, “the sound field will be determined by
another group of modes...result[ing] in a change of B.” In a similar fashion, the coupling of

energy between acoustic modes can effectively change beta even if the frequency and range are
fixed. The goal of the present work has been to study if the waveguide invariant can still be a
practical tool at the level of the mode coupling introduced by shallow water internal waves.

Depending on the configuration, random background internal waves can cause an
assortment of effects. If the source and receiver are appropriately placed relative to the
thermocline, the internal waves can actually enhance the striations and sharpen the waveguide
distribution. In other cases, the waveguide distribution can become bimodal making it appear as if
there were two acoustic sources. In general, however, while the random background internal waves
induce fluctuations in the invariant, they do not inherently destroy the concept. Packets of discrete
solitary internal waves are more problematic. These waves introduce strong mode coupling and
rapid variability in the acoustic interference pattern. For the simulation parameters considered, a
definitive invariant could not be identified in the presence of solitary waves.
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